Comparison of the Accuracy of GIS-Based Maps for Multi-Hazards in the Bandung-Cirebon High-Speed Railway Route Plan Phase I (Rancaekek-Cimalaka)

Authors

  • Adya Aghastya Construction and Railway Technology, Indonesia Railway Polytechnic
  • Afan Hafid Hanafi Construction and Railway Technology, Indonesia Railway Polytechnic
  • Nurul Fitria Apriliani Construction And Railway Technology, Indonesia Railway Polytechnic

DOI:

https://doi.org/10.71225/jstn.v2i2.111

Keywords:

GIS, Disaster Risk, High-Speed Railway, Landslide, Earthquake, Flood

Abstract

Indonesia’s location within the Pacific Ring of Fire makes it highly vulnerable to natural disasters such as earthquakes, floods, and landslides. This study analyzes disaster vulnerability along the planned Phase I route of the Bandung–Cirebon High-Speed Railway (Rancaekek–Cimalaka) using Geographic Information System (GIS) tools. The analysis includes hazard mapping for landslides, floods, and earthquakes, as well as multi-hazard classification and accuracy assessment. Results show 73 high-risk landslide points, 20 earthquake-prone locations, and 47 multi-hazard zones, primarily concentrated in segments DK 1–5, DK 10–32, and DK 29–33. These findings underscore the need for targeted mitigation and resilient infrastructure planning.

References

[1] Aghastya, A. Wardana, W.Tamtomo Adi, N. AhdaImron, and W. Artha Wirawan, “Geometry Design of Railway Track for High-Speed Railways Bandung-Cirebon KM 00+000-KM 33+850”, jrtt, vol. 2, no. 2, pp. 34–45, Oct. 2023

[2] Ariyora, Y. K. S., Budisusanto, Y., & Prasasti, I. (2015). Pemanfaatan Data Penginderaan Jauh Dan Sig Untuk Analisa Banjir (Studi Kasus : Banjir Provinsi Dki Jakarta). Geoid, 10(2), 137. https://doi.org/10.12962/j24423998.v10i2.805

[3] Fauzi, M. (2021). Pemetaan Multi-Bencana Pada Jalur Kereta Api Lintas Selatan Dari Sta. Wates-Sta. Kutowinangun. In Jurnal Teknik Sipil (Vol. 16, Issue 2)

[4] Lavina Ngesti, B. (2018). TA_Pemetaan Multi-Rawan Bencana Jalur KA Lintas Cirebon Semarang Berbasis SIG.pdf (p. 93).

[5] Meteorologi Klimatologi Dan Geofisika, B. (2014). JURNAL METEOROLOGI DAN GEOFISIKA. Met. & Geo, 15(2), 77–146. http://puslitbang.bmkg.go.id

[6] Peraturan Menteri Pekerjaan Umum No. 21, 2007). (2007). Peraturan Menteri Pekerjaan Umum No. 21/PRT/M/2007: Pedoman Penataan Ruang Kawasan Rawan Letusan Gunung Berapi dan Kawasan Rawan Gempa Bumi. Departemen Pekerjaan Umum Direktorat Jenderal Penataan Ruang, 21, 12. www.pu.go.id

[7] Adi, W. T., Aghastya, A., Prihatanto, R., Imron, N. A., & Cahyono, A. R. (2024). Accuracy assessment of GIS-based map for landslide susceptibility for a railway track. In A. Pradipta et al. (Eds.), Proceedings of the 2nd International Conference on Railway and Transportation (ICORT 2023), Advances in Engineering Research, 231, 510–521. https://doi.org/10.2991/978-94-6463-384-9_45

[8] Perka BNPB. (2012). Peraturan Kepala Badan Nasional Penanggulangan Bencana, Nomor 02 Tahun 2012, Tentang Pedoman Umum Pengkajian Resiko Bencana. Jurnal Ilmu Tanah Dan Lingkungan, 16(2), 67. https://doi.org/10.29244/jitl.16.2.67-74

[9] Susetyo, J. A., Astutik, S., Kurnianto, F. A., Nurdin, E. A., & Pangastuti, E. I. (2023). Pemetaan Daerah Rawan Bencana Tanah Longsor di Wilayah Kecamatan Silo Kabupaten Jember. Jurnal Ilmu Lingkungan, 21(4), 861–869. https://doi.org/10.14710/jil.21.4.861-869

[10] Tamtomo Adi, W., Aghastya, A., Prihatanto, R., Rizky Cahyono, A., & Anwer, I. (2023). Landslide Susceptibility Assessment of a Railway Based on GIS Application. In Journal of Railway Transportation and Technology (Vol. 2, Issue 2, pp. 12–23). https://doi.org/10.37367/jrtt.v2i2.27

[11] Ulfah, N. (2018). Identifikasi Potensi Kerawanan Bencana Pada Jalur Kereta Api Yogyakarta-Cilacap Dengan Pemetaan Multi-Rawan Bencana Menggunakan Arcgis. Nucleic Acids Research, 6(1), 1–96.

[12] Wahyuningtyas, A., & Pratomo, R. A. (2015). Identifikasi Potensi Multi-Bencana Di Kabupaten Landak Kalimantan Barat. Geoplanning: Journal of Geomatics and Planning, 2(1), 10–21. https://doi.org/10.14710/geoplanning.2.1.10-21

[13] Widjonarko, W., & Wijaya, H. B. (2014). Pemetaan Potensi Bencana Longsor Di Kelurahan Kembang Arum. Geoplanning: Journal of Geomatics and Planning, 1(2), 93–101. https://doi.org/10.14710/geoplanning.1.2.93-101

[14] Badan Penanggulangan Bencana Daerah Kabupaten Sumedang. Dashboard Data Bencana Kabupaten Sumedang. sitabah.sumedangkab.go.id/Dashboard1. Accessed 16 June 2025.

[15] Lee, C.-F., Huang, W.-K., Chang, Y.-L., Chi, S.-Y., & Liao, W.-C. (2018). Regional landslide susceptibility assessment using multi-stage remote sensing data along the coastal range highway in northeastern Taiwan. Geomorphology, 300, 113–127. https://doi.org/10.1016/j.geomorph.2017.10.019

[16] Mathew, J., Jha, V. K., & Rawat, G. S. (2009). Landslide susceptibility zonation mapping and its validation in part of the Garhwal Himalaya, India, using binary logistic regression model. Landslides, 6(1), 17–26. https://doi.org/10.1007/s10346-008-0134-1

[17] Meng, Q., Liu, Y., Li, D., Zhang, X., Zhang, J., & Li, M. (2016). Landslide susceptibility mapping using logistic regression, analytical hierarchy process, fuzzy logic, and support vector machine models in the Wolong area, China. Bulletin of Engineering Geology and the Environment, 75(3), 943–960. https://doi.org/10.1007/s10064-015-0773-5

[18] Mondini, A. C., Santangelo, M., & Rossi, M. (2014). Exploring the ground truth: A comparison of landslide inventories in the Pogliaschina catchment, Italy. Natural Hazards and Earth System Sciences, 14(8), 2295–2313. https://doi.org/10.5194/nhess-14-2295-2014

[19] Nefeslioglu, H. A., Gokceoglu, C., & Sonmez, H. (2008). An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology, 97(3–4), 171–191. https://doi.org/10.1016/j.enggeo.2008.01.004

[20] Chung, C. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451–472. https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b

[21] Lee, C.-F., Huang, W.-K., Chang, Y.-L., Chi, S.-Y., & Liao, W.-C. (2018). Regional landslide susceptibility assessment using multi-stage remote sensing data along the coastal range highway in northeastern Taiwan. Geomorphology, 300, 113–127. https://doi.org/10.1016/j.geomorph.2017.10.019

[22] Chen, T.-H. K., Prishchepov, A. V., Fensholt, R., & Sabel, C. E. (2020). Detecting and monitoring long-term landslides in urbanized areas with nighttime light data and multi-seasonal Landsat imagery across Taiwan from 1998 to 2017. Remote Sensing, 12(17), 2842. https://doi.org/10.3390/rs12172842

[23] Ibrahim, S. B. N., Aghastya, A., & Riyanta, W. (2025). Reactivation Strategies and Development of Tuban Station as a Heritage Building. SAINSTECH NUSANTARA, 2(1), 24–37. https://doi.org/10.71225/jstn.v2i1.57

[24] Najendra, G., Aghastya, A., & Nurhadi, M. (2024). Forecasting of MRT Railway Rail Lifetime on Fatmawati Curve Jakarta-Indonesia . SAINSTECH NUSANTARA, 1(4), 40–53. https://doi.org/10.71225/jstn.v1i4.60

[25] Suriadilaga, M., Aghastya, A., & Danartini, R. S. (2024). Selection of The Cirebon-Semarang High Speed Railway Phase I (Cirebon-Brebes) Using Arcgis 10.8. SAINSTECH NUSANTARA, 1(2), 53–62. https://doi.org/10.71225/jstn.v1i2.49

[26] Ashari, M. I., Aghastya, A., & Adi, W. (2024). Redesign of Ciamis Station With an Industrialist Concept Approach Using Autodesk Revit Application. SAINSTECH NUSANTARA, 1(2), 37–52. https://doi.org/10.71225/jstn.v1i2.46

Downloads

Published

2025-05-30

How to Cite

Aghastya, A., Hafid Hanafi, A., & Apriliani, N. F. (2025). Comparison of the Accuracy of GIS-Based Maps for Multi-Hazards in the Bandung-Cirebon High-Speed Railway Route Plan Phase I (Rancaekek-Cimalaka). SAINSTECH NUSANTARA, 2(2), 37–52. https://doi.org/10.71225/jstn.v2i2.111

Issue

Section

Articles